Cluster an adjacency matrix
Usage
cluster_graph_leiden(
snn,
resolution = 1,
objective_function = c("modularity", "CPM"),
seed = 12531,
...
)
cluster_graph_louvain(snn, resolution = 1, seed = 12531)
cluster_graph_seurat(snn, resolution = 0.8, ...)
Arguments
- snn
Symmetric adjacency matrix (dgCMatrix) output from e.g.
knn_to_snn_graph()
orknn_to_geodesic_graph()
. Only the lower triangle is used- resolution
Resolution parameter. Higher values result in more clusters
- objective_function
Graph statistic to optimize during clustering. Modularity is the default as it keeps resolution independent of dataset size (see details below). For the meaning of each option, see
igraph::cluster_leiden()
.- seed
Random seed for clustering initialization
- ...
Additional arguments to underlying clustering function
Details
cluster_graph_leiden: Leiden clustering algorithm igraph::cluster_leiden()
.
Note that when using objective_function = "CPM"
the number of clusters empirically scales with cells * resolution
,
so 1e-3 is a good resolution for 10k cells, but 1M cells is better with a 1e-5 resolution. A resolution of 1 is a
good default when objective_function = "modularity"
per the default.
cluster_graph_louvain: Louvain graph clustering algorithm igraph::cluster_louvain()
cluster_graph_seurat: Seurat's clustering algorithm Seurat::FindClusters()